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Abstract—We consider numerical methods for solving inverse problems that arise in heart
electrophysiology. The first inverse problem is the Cauchy problem for the Laplace equation. Its
solution algorithm is based on the Tikhonov regularization method and the method of boundary
integral equations. The second inverse problem is the problem of finding the discontinuity surface
of the coefficient of conductivity of a medium on the basis of the potential and its normal
derivative given on the exterior surface. For its numerical solution, we suggest a method based
on the method of boundary integral equations and the assumption on a special representation
of the unknown surface.
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Nowadays, mathematical modeling methods are actively used in medicine. The range of prob-
lems related to the use of mathematical methods for the solution of problems of heart electro-
physiology is one important direction of related research. Numerous related problems can be
considered in the framework of models of stationary electric fields and reduced to various problems
for equations of elliptic type. Inverse problems of heart electrophysiology arising in the processing
of observation results also play an important role [1, 2]. The interpretation of these observations
requires the development of stable numerical methods for inverse problems of heart electrophysiol-
ogy. An important requirement imposed on these methods is that they should be capable of easy
adaptation to changes in the geometry of the domains in which the problems should be solved.
In the present paper, we suggest numerical methods for two inverse problems of heart electro-
physiology.

1. SOLUTION METHOD FOR THE INVERSE PROBLEM
OF ELECTROCARDIOGRAPHY

Consider the statement of the inverse problem of electrocardiography. Let Ω be a domain in
the space R3 bounded by a closed surface Γ from the outside and a closed surface Γ1 from the
inside. The surfaces Γ and Γ1 are sufficiently smooth and have no common points. The surface Γ
is the union of two surfaces Γ2 and Γ3, Γ = Γ2 ∪Γ3. This geometric configuration has the following
interpretation: Γ1 is an external surface of the heart, the surface Γ2 is the human torso, and Γ3 is
the union of the top and bottom cross-sections of the torso.

The electric field of the heart is specified by sources in the cardiac muscle. Outside it, the
potential of the field satisfies the Laplace equation. On the human torso, the potential is known
from measurements, and its normal derivative is zero. The problem is to find the potential on the
heart surface.

1034



NUMERICAL METHODS FOR SOME INVERSE PROBLEMS 1035

The mathematical statement of this inverse problem can be given in a more general form. Find
a function u(x) in Ω̄ such that

Δu(x) = 0, x ∈ Ω, (1)
u(x) = ϕ(x), x ∈ Γ2, (2)

∂u(x)
∂n

= 0, x ∈ Γ2, (3)

where ϕ(x) is a given function.
Problem (1)–(3) is called the Cauchy problem for the Laplace equation and is ill posed. One

of the most essential manifestations of its ill-posedness is the instability of the potential u(x) in Ω̄
under small changes in the original data ϕ(x).

Numerous papers deal with the investigation of the uniqueness and the conditional stability
of the Cauchy problem for the Laplace equation and the development of numerical methods for
this problem (e.g., see [3–7] and the bibliography therein). The Cauchy problem for the Laplace
equation as an inverse problem of electrocardiography is characterized by the fact that it is solved
in a three-dimensional domain with complicated geometry. This, together with the ill-posedness of
the Cauchy problem for the Laplace equation, results in substantial difficulties in the construction
of numerical methods for its solution.

An algorithm for solving the Cauchy problem for the Laplace equation was suggested in [8] for
the case in which the potential u(x) and its normal derivative are known on the entire exterior
surface Γ. In the present paper, we develop a method that permits one to solve problem (1)–(3)
for the actual geometric characteristics of a human body and a real range of the potential and uses
a priori information on the desired potential on the heart surface.

The Cauchy problem (1)–(3) can be stated as the problem of finding the values of the function
u(x) on the surfaces Γ1 and Γ3 under the condition that the function u(x) satisfies problem (1)–(3).
We denote the unknown values of u(x) on Γ1 and Γ3 by v(x) and consider the boundary value
problem

Δu(x) = 0, x ∈ Ω, (4)
u(x) = v(x), x ∈ Γ1 ∪ Γ3, (5)

∂u(x)
∂n

= 0, x ∈ Γ2. (6)

The boundary value problem (4)–(6) defines an operator A taking the values of the potential
v(x) on the surface Γ1 ∪Γ3 to its values ϕ(x) on the surface Γ2. The considered inverse problem is
the problem of solving the operator equation of the first kind

Av = ϕ(x), x ∈ Γ2, (7)

where v(x) is an unknown function and ϕ(x) is a given function.
To solve Eq. (7), we use the Tikhonov regularization method [9, p. 53]. Suppose that, for the

exact values ϕ̄(x), x ∈ Γ2, there exists an exact solution v̄(x), x ∈ Γ1 ∪ Γ3, of Eq. (7), but
the function ϕ̄(x) is unknown, and we have its approximation ϕδ(x), x ∈ Γ2, and the accuracy δ
such that ‖ϕδ − ϕ̄‖L2(Γ2) ≤ δ. The problem is to construct the approximate solution vδ(x) on the
basis of the function ϕδ(x) and the accuracy δ.

For the construction of a regularized solution, it is important to use information on the desired
potential on the surfaces Γ1 and Γ3. On Γ1 (the heart surface), these may be values of the potential
on the heart surface over earlier-performed observations, and on Γ3, these may be the values
of the potential obtained after its extrapolation from the surface Γ2. Therefore, we have some
preliminary information ṽ(x) on the desired potential, which is naturally used in the construction
of an approximate solution to increase the accuracy of computations.

Consider the functional

Mα[v] = ‖Av − ϕδ‖2
L2(Γ2)

+ α‖v − ṽ‖2
L2(Γ1∪Γ3)

, (8)
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Fig. 1.

where α is a positive parameter. The approximate solution vδ is defined as an element minimizing
the functional Mα[v], in which the regularization parameter α depends in an appropriate way on the
accuracy δ, i.e., α = α(δ), and can be found from the discrepancy principle

‖Avδ − ϕδ‖L2(Γ2) = δ. (9)

It follows from the necessary condition of minimum of the regularizing functional (8) that the
approximate solution vδ is a solution of the operator equation

α(v − ṽ) + A∗Av = A∗ϕδ, (10)

where the operator A∗ is found from the boundary value problem [10]

Δu(x) = 0, x ∈ Ω, (11)
u(x) = 0, x ∈ Γ1 ∪ Γ3, (12)

∂u(x)
∂n

= −w(x), x ∈ Γ2. (13)

Therefore, for the construction of an approximate solution vδ, one should find a numerical
solution of the boundary value problems (4)–(6) and (11)–(13). To this end, we use the method of
boundary integral equations.

The surface ∂Ω = Γ1∪Γ2∪Γ3 bounding the domain Ω is approximated by the polygonal surface
S = Γ̂1∪ Γ̂2∪ Γ̂3, which consists of the union of N plane triangles referred to as boundary elements,
S = ζ1 ∪ ζ2 ∪ · · · ∪ ζN (Fig. 1). The set of boundary elements forms a boundary element grid.
The nodes of the boundary-element grid are defined as the points xi ∈ S, i = 1, 2, . . . , N , placed
at the centers of gravity of the boundary elements ζi.

On the surface S, we introduce a system of linearly independent compactly supported basis
functions φj(x), x ∈ S, j = 1, 2, . . . , N , which are defined as follows:

φj(x) = 1, x ∈ ζj, φj(x) = 0, x /∈ ζj. (14)

Consider the approximate representation of the functions u(x) and q(x) ≡ ∂u(x)/∂n in the form
of the expansion in the system of basis functions φj(x) :

ũ(x) =
N∑

j=1

αjφj(x), (15)

q̃(x) =
N∑

j=1

βjφj(x), (16)
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where the expansion coefficients αj and βj are the values of the functions ũ(x) and q̃(x) at the
nodes of the boundary-element grid.

For each nodal point xi, one can write out a discrete analog of the third Green formula
[11, p. 311] :

2πũ(xi) =
∫

S

q̃(y)
1

|xi − y| dsy −
∫

S

ũ(y)
∂

∂ny

1
|xi − y| dsy, (17)

where i = 1, 2, . . . , N , xi ∈ ζi, y ∈ S, and |xi − y| is the distance between the points xi and y.
By substituting the representations (15) and (16) into (17), we obtain the formula

2παi =
∫

S

(
N∑

j=1

βjφj(y)

)
1

|xi − y| dsy −
∫

S

(
N∑

j=1

αjφj(y)

)
∂

∂ny

1
|xi − y| dsy. (18)

By exchanging integration and summation, we rewrite formula (18) in the form

2παi =
N∑

j=1

βj

∫

S

φj(y)
1

|xi − y| dsy −
N∑

j=1

αj

∫

S

φj(y)
∂

∂ny

1
|xi − y| dsy. (19)

This, together with system (14), implies a system of equations for αj and βj (i = 1, 2, . . . , N ,
j = 1, 2, . . . , N),

2παi +
N∑

j=1

αj

∫

ζj

∂

∂ny

1
|xi − y| dsy =

N∑

j=1

βj

∫

ζj

1
|xi − y| dsy, (20)

which can be represented in the matrix form

Hu = Gq, (21)

where H and G are the matrices computed as follows:

H ≡ [hij ] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

ζj

∂

∂ny

1
|xi − y| dsy for i �= j

∫

ζj

∂

∂ny

1
|xi − y| dsy + 2π for i = j,

(22)

G ≡ [gij ] =
∫

ζj

1
|xi − y| dsy, (23)

u = [α1, α2, . . . , αN ]T, and q = [β1, β2, . . . , βN ]T.
Consider the matrices H{2,2}, H{2,13}, H{13,2}, and H{13,13} consisting of entries hij such that

xi, ζj ∈ Γ̂2; xi ∈ Γ̂2, ζj ∈ Γ̂1 ∪ Γ̂3; xi ∈ Γ̂1 ∪ Γ̂3, ζj ∈ Γ̂2; and xi, ζj ∈ Γ̂1 ∪ Γ̂3, respectively.
In a similar way, we define the matrices G{2,2}, G{2,13}, G{13,2}, and G{13,13}. By u{2} we denote
the values αj corresponding to the surface Γ̂2, and by u{13} we denote the values αj corresponding
to the surface Γ̂1 ∪ Γ̂3; in addition, we introduce similar notation for the vector q.

By taking into account the above-introduced notation, one can rewrite system (21) in the form

[
H{2,2} H{2,13}

H{13,2} H{13,13}

][
u{2}

u{13}

]
=

[
G{2,2} G{2,13}

G{13,2} G{13,13}

][
q{2}

q{13}

]
. (24)
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Consider a method for the approximate solution of problem (4)–(6). Since the values of the
potential on Γ1 ∪ Γ3 are known and the normal derivative on Γ2 is zero, we have u{13} = v{13} and
q{2} = 0, where v{13} are given numbers. Therefore, system (24) can be rewritten in the form

[
H{2,2} H{2,13}

H{13,2} H{13,13}

][
u{2}

v{13}

]
=

[
G{2,2} G{2,13}

G{13,2} G{13,13}

][
0

q{13}

]
. (25)

After transformations, we obtain
u{2} = V −1

1 V2v{13}, (26)

where

V1 = H{2,2} − G{2,13}G
−1
{13,13}H{13,2}, (27)

V2 = −H{2,13} + G{2,13}G
−1
{13,13}H{13,13}. (28)

Then the approximate solution of the boundary value problem (4)–(6) on the surface Γ2 has the
form

u{2} = Âv{13}, (29)

where
Â = V −1

1 V2. (30)

Consider the method for the approximate solution of problem (11)–(13). Since the values of
the potential are zero on Γ1 ∪ Γ3 and the values of the normal derivative on Γ2 are known, we
have u{13} = 0 and q{2} = −w{2}, where the w{2} are given numbers. Then system(24) can be
represented in the form

[
H{2,2} H{2,13}

H{13,2} H{13,13}

][
u{2}

0

]
=

[
G{2,2} G{2,13}

G{13,2} G{13,13}

][
−w{2}

q{13}

]
. (31)

After transformations, we obtain
q{13} = −W−1

1 W2w{2}, (32)

where

W1 = G{13,13} − H{13,2}H
−1
{2,2}G{2,13}, (33)

W2 = −G{13,2} + H{13,2}H
−1
{2,2}G{2,2}. (34)

Consequently, the approximate solution of the boundary value problem (11)–(13) on the surface
Γ1 ∪ Γ3 has the form

q{13} = Â∗w{2}, (35)

where
Â∗ = −W−1

1 W2. (36)

Let us proceed to finding an approximate solution of Eq. (10). By (29) and (35), it can be
approximated by the system of linear algebraic equations

α(vδ − ṽ) + Â∗Âvδ = Â∗ϕδ, (37)

which can be solved with the use of the corresponding methods of computational linear algebra.
Consider an example of use of the developed method for the numerical solution of the inverse

problem of electrocardiography. The actual geometric parameters of the torso and heart surfaces
were found from computer tomography. The number of boundary elements on these surfaces was
equal to 2500 (see Fig. 1). The scheme of the numerical experiment was the following. The potential
v̄ corresponding to a quadruple source inside the heart was posed on the surfaces Γ1 and Γ3.
The direct problem with this potential was solved, and the function ϕ̄(x) was computed on Γ2.
An error was added to it, and the function ϕδ(x) was obtained. Then the inverse problem with
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Fig. 2.

this function was solved by the suggested method, and an approximate solution vδ was found.
The function ṽ was chosen to be corresponding to a dipole source inside the heart. The values of
the potentials v̄, vδ, and ṽ taken on a contour that represents one specific cross-section of the heart
surface are shown in Fig. 2. The value of the error was δ = 10−2.

2. A METHOD FOR THE PROBLEM OF FINDING AN UNKNOWN SURFACE

In the investigation of processes of heart excitation, one encounters various inverse problems
related to finding unknown spatial characteristics of the medium (e.g., see [2]). We consider one
possible problem of such a type.

First, let us state the direct problem. Let a domain Ω in R3 be bounded by a closed surface
Γ0, and let a closed surface Γ1 bound a domain Ω1 ⊂ Ω. Set Ω0 = Ω\Ω̄1. The problem is to find
a function u(x) such that u ∈ C(Ω̄) and u(x) = ui(x), x ∈ Ωi (i = 0, 1), where ui ∈ C2(Ωi)∩C1(Ω̄i)
and

Δui(x) = 0, x ∈ Ωi, i = 0, 1, (38)
u0(x) = U(x), x ∈ Γ0, (39)
u0(x) = u1(x), x ∈ Γ1, (40)

k0

∂u0(x)
∂n

= k1

∂u1(x)
∂n

, x ∈ Γ1. (41)

The constants k0 and k1 are positive.
The unique solvability of problem (38)–(41) was proved in [12].
Consider the following inverse problem. Let the surface Γ0, the coefficients k0 and k1, and the

function U(x) be known, and let the interior surface Γ1 be unknown. The problem is to find the sur-
face Γ1 if we have additional information on the solution of the boundary value problem (38)–(41),

∂u0(x)
∂n

= Q(x), x ∈ Γ0. (42)

In what follows, we assume that Γ1 is a star-shaped surface with known center; i.e., it can be
represented by some unknown function r(θ, ϕ) in the spherical coordinate system. The boundary
value problem (38)–(41) defines a nonlinear operator A taking the function r(θ, ϕ) to the normal
derivative of the potential on the surface Γ0. Thus, the inverse problem is the problem of solving
the nonlinear operator equation of the first kind

Ar = Q(x), x ∈ Γ0. (43)
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1040 DENISOV et al.

Let us proceed to the numerical solution of the inverse problem. To this end, it is necessary to
develop a method for the approximate solution of the boundary value problem (38)–(41) defining
the operator A. We use the method of boundary integral equations.

We approximate the surfaces Γ0 and Γ1 by polygonal surfaces Γ̂0 and Γ̂1 that consist of plane
triangles,

Γ̂0 = ζ1 ∪ ζ2 ∪ · · · ∪ ζM , (44)

Γ̂1 = ζM+1 ∪ ζM+2 ∪ · · · ∪ ζN (45)

with nodal points xi (i = 1, 2, . . . , N) that are located at the centers of gravity of the corresponding
elements ζi.

On the surface Γ̂ = Γ̂0 ∪ Γ̂1, we introduce a system of linearly independent compactly supported
basis functions φj(x), x ∈ Γ̂, j = 1, 2, . . . , N , defined by relations (14). We approximately represent

the functions u0(x), u1(x), q0(x) ≡ ∂u0(x)
∂n

, and q1(x) ≡ ∂u1(x)
∂n

on the surface by expansions in the

system of basis functions φj(x),

ũ0(x) =
M∑

j=1

αjφj(x), q̃0(x) =
M∑

j=1

βjφj(x), x ∈ Γ̂0, (46)

ũ1(x) =
N∑

j=M+1

αjφj(x), q̃1(x) =
N∑

j=M+1

βjφj(x), x ∈ Γ̂1. (47)

By writing out a discrete analog of the third Green formula in the domain Ω0 for the nodal
points xi ∈ Γ̂0 and xi ∈ Γ̂1 and by taking into account (40) and (41), we obtain the relations

2πũk(xi) =
∫

Γ̂0

q̃0(y)
1

|xi − y| dsy −
∫

Γ̂0

ũ0(y)
∂

∂ny

1
|xi − y| dsy +

k1

k0

∫

Γ̂1

q̃1(y)
1

|xi − y| dsy

−
∫

Γ̂1

ũ1(y)
∂

∂ny

1
|xi − y| dsy, xi ∈ Γ̂k, k = 0, 1. (48)

By writing out a discrete analog of the third Green formula in the domain Ω1 for the nodal points
xi ∈ Γ̂1, we obtain

−2πũ1(xi) =
∫

Γ̂1

q̃1(y)
1

|xi − y| dsy −
∫

Γ̂1

ũ1(y)
∂

∂ny

1
|xi − y| dsy, xi ∈ Γ̂1. (49)

By substituting the representations (46) and (47) into (48) and (49) and by exchanging integra-
tion and summation, we obtain the system

2παi +
M∑

j=1

αj

∫

ζj

∂

∂ny

1
|xi − y| dsy +

N∑

j=M+1

αj

∫

ζj

∂

∂ny

1
|xi − y| dsy

=
M∑

j=1

βj

∫

ζj

1
|xi − y| dsy +

k1

k0

N∑

j=M+1

βj

∫

ζj

1
|xi − y| dsy, xi ∈ Γ̂k, k = 0, 1,

− 2παi +
N∑

j=M+1

αj

∫

ζj

∂

∂ny

1
|xi − y| dsy =

N∑

j=M+1

βj

∫

ζj

1
|xi − y| dsy, xi ∈ Γ̂1.

(50)
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Consider the matrices H+
{k,l}, H−

{k,l}, and G{k,l} (k = 0, 1; l = 0, 1) with entries

h±
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

ζj

∂

∂ny

1
|xi − y| dsy for i �= j

∫

ζj

∂

∂ny

1
|xi − y| dsy ± 2π for i = j,

(51)

gij =
∫

ζj

1
|xi − y| dsy, (52)

respectively, such that xi ∈ Γ̂k and ζj ∈ Γ̂l (i = 1, 2, . . . , N ; j = 1, 2, . . . , N). We introduce
the vectors u{0} = [α0, α1, . . . , αM ]T, u{1} = [αM+1, αM+2, . . . , αN ]T, q{0} = [β0, β1, . . . , βM ]T, and
q{1} = [βM+1, βM+2, . . . , βN ]T.

By virtue of the above-introduced notation, system (50) can be represented in the form

H+
{k,0}u{0} + H+

{k,1}u{1} = G{k,0}q{0} +
k1

k0

G{k,1}q{1}, k = 0, 1, (53)

H−
{1,1}u{1} = G{1,1}q{1}. (54)

By expressing the vector q{1} from (54), one can reduce this system to the form

H+
{k,0}u{0} + R{k,1}u{1} = G{k,0}q{0}, k = 0, 1, (55)

where
R{i,j} = H+

{i,j} −
kj

k0

G{i,j}G
−1
{j,j}H

−
{j,j}. (56)

Since the values of the potential on the surface Γ0 are known, we have u{0} = U, where U is
a known vector. Then system (55) can be represented in the form

G{k,0}q{0} − R{k,1}u{1} = H+
{k,0}U, k = 0, 1. (57)

By solving this system in q{0}, we obtain

q{0} = ÂU, (58)

where
Â = (G{0,0} − R{0,1}R

−1
{1,1}G{1,0})−1(H{0,0} − R{0,1}R

−1
{1,1}H{1,0}). (59)

Formula (58) defines an approximate solution of problem (38)–(41).
When solving the inverse problem, we assume that the unknown surface r(θ, ϕ) can be repre-

sented as

r(θ, ϕ) =
N∑

n=0

n∑

m=−n

anmY m
n (θ, ϕ), (60)

where

Y m
n (θ, ϕ) =

⎧
⎨

⎩

Y 0
n (θ, ϕ) = P 0

n(cos θ) for m = 0
Y m

n (θ, ϕ) = P |m|
n (cos θ) sin |m|ϕ for m < 0

Y m
n (θ, ϕ) = P m

n (cos θ) cos mϕ for m > 0,
(61)

the P m
n (x) are the associated Legendre functions, and the anm are unknown parameters such that

|anm| ≤ Cnm with given numbers Cnm.
Suppose that, for the exact data Q̄(x), the operator equation (43) has a unique solution r̄(θ, ϕ)

defined by a set of parameters ānm. However, Q̄(x) is an unknown function; Qδ(x) and an error
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Fig. 3. Fig. 4.

δ are given such that ‖Q̄ − Qδ‖L2(Γ0) ≤ δ. In this case, an approximate solution of the inverse
problem can be found by the minimization of the discrepancy functional [9, p. 38]

Φ(anm) = ‖Ar(θ, ϕ; anm) − Qδ‖L2(Γ0) (62)

on the set |anm| ≤ Cnm. The validity of the inequality Φ(anm) ≤ δ is a natural condition for
stopping the minimization process.

Therefore, the numerical solution method for the inverse problem is a combination of an approxi-
mate computation of values of the nonlinear operator A and the minimization of the functional (62).

Let us present the results of the operation of the suggested algorithm for the solution of the
inverse problem. The scheme of the numerical experiment is the following. An exact surface
r(θ, ϕ, ānm) given by the parameters ānm was given. For that surface, we solved problem (38)–(41)
and computed the normal derivative Q̄(x) on the surface Γ0. Then we added an error and con-
structed the function Qδ(x) for which the inverse problem was solved. Figure 3 represents the
contours of cross-sections of the exact surface r(θ, ϕ, ānm), the approximate surface r(θ, ϕ, aδ

nm), and
the initial approximation r(θ, ϕ, a0

nm) corresponding to θ = π/4. The error value was δ = 10−2,
and N = 3. Figure 4 represents the contours of cross-sections of the exact surface (the ellip-
soid), the approximate surface r(θ, ϕ, aδ

nm), and the initial approximation r(θ, ϕ, a0
nm) corresponding

to θ = π/8. The error value was δ = 10−2, and N = 4.
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